TO: SPOKANE RIVER INSTREAM FLOW WORK GROUP
FROM: MIKE HERMANSON
SUBJECT: MODELED SPOKANE RIVER FLOWS
DATE: NOVEMBER 27, 2007

TECHNICAL MEMORANDOM

Introduction

This technical memorandum describes groundwater flow modeling performed in support of Washington State Department of Ecology (Ecology) Grant G0800066-Development of an Instream Flow (ISF) Rule Recommendation for the Spokane River. In July 2007 a workgroup comprised of members from WRIA 55/57 (Middle and Little Spokane) and WRIA 54 (Lower Spokane) Watershed Planning Units formed to develop a Spokane River ISF Recommendation to present to their respective planning units. One facet of the recommendation is the affect of groundwater withdrawals on river flows. Spokane County staff utilized the USGS Ground-Water Flow Model for the Spokane ValleyRathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho (Bi-State Model) detailed in Scientific Investigations Report 2007-5044 to simulate and analyze river flow response to hypothetical groundwater withdrawals. This modeling effort and report only consider withdrawals and associated returns within the State of Washington. All inputs and outputs within the State of Idaho were left unchanged.

It is well documented that there is a dynamic interaction between the Spokane Valley Rathdrum Prairie (SVRP) Aquifer and the Spokane River, and that groundwater withdrawals from the SVRP Aquifer affect Spokane River flows. The majority of groundwater withdrawals from the SVRP aquifer are from water purveyors. Currently, approximately 52% of municipal water rights have been exercised. In accordance with Municipal Water Bill (2E2SHB) 1338 the remaining 48\% is available to meet future demand. The Spokane River ISF Workgroup identified the determination of water availability as an important task to complete prior to developing an ISF recommendation. To determine water availability it is necessary to know the affect on river flows when 100% of municipal water rights are exercised.

Model Setup

The Bi-State Model was developed with MODFLOW-2000 (USGS). MODFLOW utilizes a modular design to simulate components of the groundwater flow system. The components are known as packages. The package in the Bi-State Model that represents
purveyor withdrawals is the Well Package. In addition to purveyor withdrawals the Well Package also simulates withdrawals for domestic use outside of water purveyor service areas, withdrawals for agricultural irrigation outside of water purveyor service areas, withdrawals by self supplied golf courses, and withdrawals by self-supplied industries. The Well Package also simulates returns to the groundwater flow system from percolation from irrigation, both landscape and agricultural, and return from septic system effluent. For a detailed discussion of the other components of the model refer to USGS Report 2007-5044.

To simulate 100% municipal water rights exercised it was necessary to modify three components of the Well Package; 1. Purveyor withdrawals 2. Increased percolation from landscape irrigation associated with increased pumping, and 3. Increased percolation from septic effluent associated with increased pumping. To facilitate constructing model scenarios the USGS provides (via the project website) the well package data broken into its various components and a software utility to combine the components into one consolidated data input file.

The first step in developing the data for the model scenario was to associate model cells listed in the purveyor pumping component of the well package with actual purveyor wells. Then each purveyor's water system plan was used to associate the well, or withdrawal point, with a water right. Since a one to one relationship did not occur in all instances accommodations were made estimate the water right associated with each withdrawal point. Table 1 details the relationship of withdrawal points, model cells and water rights for each purveyor.

In most cases the water right specifies an instantaneous withdrawal (Qi) and an annual withdrawal (Qa). To determine which would be used for the model scenario the Qa was compared to an annualized Qi. The annualized Qi was computed by assuming the full Qi would be withdrawn for the entire month of August, 24 hours a day and the other months at a percentage of August use based on use patterns for that purveyor. If the annualized Qi was less than the Qa then the Qi is the limiting factor and was used in the scenario. If it was not less than the Qa then the Qa was the limiting factor and was used in the scenario. In both cases the distribution of withdrawal throughout the year was determined from historic use patterns for each purveyor.

No new withdrawal points (wells) were added to the model. All increased withdrawal was assigned to an existing point. Increases were assigned based on the water right for that particular point. If the water right was not assigned to a particular point, as is the case with some consolidated water rights, then the increase was assigned to each point based on pumping capacity listed in the purveyor water system plan.

The second and third components of the well package that were modified for the scenario were return percolation from landscape irrigation within purveyor service areas and
return percolation from septic system effluent within purveyor service areas. In the original model each of these components were derived from several factors including indoor use vs. outdoor use, portions of the purveyor service area in the model domain vs. the portions outside of the model domain, changing purveyor service areas during the period of time modeled, increase of sewer hookups during the period of time modeled, etc. All of these factors make it complex to calculate returns from landscape irrigation and septic effluent percolation. Since the model represented percolation returns as uniform over each purveyor service area it is possible to calculate landscape irrigation and septic effluent percolation for the model scenario from the percentage change in pumping from the original model to the model scenario. Percentage change was developed for each purveyor service area for each month of the year based on the original withdrawal vs. the increased withdrawal for each purveyor service area. The percentage increase was applied to the original landscape irrigation and septic system effluent percolation.

Once the pertinent components of the well package were modified the utility provided by the USGS was utilized to construct a well package input file for the model. The model represents the period of time from September 1990 to September 2005. To ensure model stability the original well package was used for the period from 1990 to 1999 and the modified well package from 2000 to 2005 . Three version of the scenario were run:

1. 100% withdrawal of inchoate rights, with no return percolation from landscape irrigation or septic system effluent;
2. 100% withdrawal of inchoate rights, with return percolation from landscape irrigation but not from septic system effluent; and
3. 100% withdrawal of inchoate rights, with return percolation from both landscape irrigation and septic system effluent.
These versions were chosen because projecting were water will be used in the future is complex and these scenarios represent the bounds of the possibilities.

Results

The goal of this modeling effort is to determine the impact of exercising 100% of water rights currently allocated for the SVRP Aquifer within the State of Washington on river flows during August, the critical low flow time. The model predicts that if 100% of purveyor water rights were exercised between the years 2000 and 2005 August river flows would be significantly reduced downstream of Pines Road. Between 2000 and 2005 flow reduction in August at the Spokane Gage ranged between 208 cfs and 280 cfs. Table 2 presents the river flows for each scenario at five locations between Post Falls and Nine Mile.

In addition to predicting flows at specific gages the model predicts river gains and losses for each model cell. By comparing the change in river gains and losses for each scenario it is possible to determine which sections of the river are impacted by increased
withdrawal. Figure 6 demonstrates that if 100% of purveyor water rights were exercised the river/aquifer interaction between Pines Rd and the Spokane Gage would be impacted but the interaction above and below that section would not. This indicates that the flow at the Barker Rd. Gage is dependent on the flow released from Post Falls Dam, which is dependent on inflows to Lake Coeur d'Alene. This also demonstrates that the best measure of impacts to river flow from groundwater withdrawal is the Spokane Gage.

In addition to the Spokane River, the Little Spokane River is also represented in the model. As was done with the Spokane River, river flow impacts were evaluated for each withdrawal scenario. Table 3 presents the results for August of 2000 to 2005. The results indicate that modeled groundwater withdrawal does not significantly impact the flow of the Little Spokane River at the "Near" Dartford Gage.

Table 2

Actual \& Modeled Spokane River Flows August 2000-2005				
Year	No Change	Full Inchoate Right Exercised		
		Septic and Landscape Return	Landscape Return	No Return
Post Falls Gage (Stream Segment 33)				
2000	533	533	533	533
2001	376	376	376	376
2002	854	854	854	854
2003	360	360	360	360
2004	1002	1002	1002	1002
2005	473	473	473	473
Barker (Stream Segment 66)				
2000	284	284	284	284
2001	134	134	134	134
2002	592	592	592	592
2003	119	119	119	119
2004	739	739	739	739
2005	226	226	226	226
Spokane Gage (Stream Segment 125)				
2000	1084	853	844	810
2001	671	463	449	411
2002	1334	1110	1097	1054
2003	680	469	457	415
2004	1264	1055	1045	1004
2005	714	497	487	444
Gun Club (Stream Segment 159)				
2000	1169	948	939	898
2001	755	551	538	494
2002	1422	1203	1190	1141
2003	764	558	546	499
2004	1345	1144	1134	1087
2005	796	587	577	529
Nine Mile (Stream Segment 179)				
2000	1314	1094	1085	1044
2001	944	741	728	683
2002	1616	1398	1384	1335
2003	935	731	719	670
2004	1525	1326	1315	1268
2005	968	761	751	701

Table 3

Actual \& Modeled Little Spokane River Flows				
August 2000-2005				

System Name	Water Right		Annulized Qi （AF／YR）	Allocation Method	Source	Capacity	Model Cell	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	oct	Nov	Dec
Water Right	gpm	AFIVR																	
MODERN ELECTRIC WATER CO．	37875	19061																	
C3＊＊04099ALC（3421A），Consolidated	36325	29061	27，731	Qa															
	3771	3017	3，007	Qi	Well 2	3000	L1R145C115	6，094，720	6，094，720	5，625，995	6，250，994	10，626，691	13，752，188	21，25，382	22，503，580	15，002，387	7，501，194	6，094，720	6，094，720
	5028	4022	4，009	Qi	Well 3	4000	L1R149C118	8，126，293	8，126，293	7，501，194	8，334，659	14，168，221	18，336，251	28，33，842	30，004，774	20，003，183	10，001，591	8，126，293	8，126，293
	6033	4827	4，811	Qi	Well 4	4800	L1R147C111	9，751，552	9，751，552	9，001，432	10，001，591	17，002，705	22，003，501	34，05，411	36，005，729	24，003，819	12，001，910	9，751，552	9，751，552
	5028	4022	4，009	Qi	Well 6	4000	L1R143C111	8，126，293	8．126，293	7，501，194	8，334，659	14，168，221	18，336，251	28，33，842	30，004，744	20，003，183	10，001，591	8．126，293	8，126，293
	4022	3218	3，207	Qi	Well 7	3200	L1R151C119	6，501，034	6．501，034	6，000，955	6，667，727	11，335，137	14，669，01	22，67，274	24，003，819	16，002，546	8，001，273	6，501，034	6，501，034
	2514	2011	2，005	Qi	Well 8	2000	L1R144C114	4，063，146	4，063，146	3，750，597	4，167，330	7，084，460	9，168，125	14，168，921	15，002，387	10，001，591	5，00，796	4，063，146	4，063，146
	9930	7944	7，918	Qi	Well 11	7900	L1R145C118	16，49，429	16，049，429	14，814，857	16，46，952	27，983，619	36，214，966	55，96， 238	59，259，29	39，506，286	19，753，143	16，049，429	16，049，429
$63^{*+095000 ~(7127 A) ~}$	1550	1300	1，236	Qi	Well 9	1500	L1R153C119	2，505，281	2，505，281	2，312，567	2，569，519	4，368，182	5．652，941	8，73，${ }^{\text {，}}$ ， 4	9，250，267	6，166，845	3，083，422	2，505，281	2，505，281
ORCHARD AVENUE IRRIGATION DIST 6	9160	3161	6，993	Qa															
63 ${ }^{\text {²00820ALCWRIS }}$（581）	2000	1191	1，527		Well 1	3950	L1R141C106	671，946	536，292	551，968	1，762，075	8，327，624	13，780，392	18，28，978	18，090，743	10，265，532	2，740，991	560，693	491，015
C3＊＊V1P4641（736－D）	6360	1970	4，855		Well 2	3200	L1R141C107	544，361	${ }^{434,465}$	447，164	1，427，504	6，746，429	11，163，862	14，81，387	14，655，91	8，316，380	2，220，549	454，232	397，784
${ }^{63}{ }^{*}+88186($（6072－A）	800	264	611																
PPASADENA PARK IRR DIST 17	5250	3500	4，187	Qa															
63：05641C	2000	1870	1.595		Well 1	500	L1R137C109	541,155	444，132	522,170	626，410	1，059，348	1，343，546	2，027，366	1，918，965	1，246，635	689，599	468，182	444，439
63.2042	2000	1503	1，595		Well 2	1000	L1R138C112	1，082，311	888，263	1，044，340	1，252，820	2，118，695	2，687，091	4，054，732	3，887，929	2，493，271	1，379，198	${ }^{936,364}$	888，877
63.00881 D	1250	127	997		Well 3	1727	L1R136C110	1，869，151	1，534，030	1，803，575	2，163，620	3，658，987	4，640，006	7，02，522	6，688，104	4，305，878	2，381，875	1，617，101	1，535，091
C3＊07330ALC	2000	920	1，595		Well 4	2000	L1R137C109	2，164，622	1，776，526	2，088，679	2，505，640	4，237，391	5，374，182	8，10，464	7，675，858	4，986，541	2，758，396	1．872，279	1，777，755
C3．28003CWRIS	180	72	144		Well 5	1500	L1R137C108	1，623，466	1，332，395	1．566，509	1．879，230	3，178，043	4，030，637	6，082，098	5，756，894	3，739，906	2，068，97	1，404，547	1，333，316
SPOKANE CO WATER DIST \＃3，SYS \＃1	2605	1708																	
$63^{*} 011255(1270-A)$	500	137	362	Qa	S－04	0	L1R146C108	192，425	194，933	221，873	300，809	4927，76	785，118	1，185，167	1，095，946	678，511	393，271	208，321	218，540
63.01269 （1269．A）	500	137	362	Qa	S－05	500	L1R142C109	192，425	194，933	221，873	300，809	492，746	785，118	${ }^{1,185,167}$	1，095，946	678，571	393，271	208，321	218，540
63＊＊02807（2143－A）	500	538	362	Qa	S－06	0	L1R145C105	${ }^{755,654}$	766，503	871，298	1，181，279	1，935，016	3，083，165	4，654，158	4，303，787	2，664，752	1，544，378	818，080	856，210
63＊＊0473CWRIS（325－A）	500	800	362	Qa	S－07	0	L1R144C107	1，123，649	1，138，294	1，295，611	1，756，549	2，877，347	4，584，632	6，92，681	6，399，684	3，962，457	2，296，473	1，216，476	1，276，148
63.08854 C	605	370	438	Qa	S－11	1000	L1R149C101	519,688	526，461	599，220	812，404	1，330，773	2，120，392	3，20，815	2，959，854	1，882，636	1，062，119	562,620	590，219
63＊00607SWRIS	120	46	87	Qa	S－10	2000		64，610	65.45	74，498	101，022	165，447	263，616	397，939	367，982	227，841	132，047	69，977	73，379
$6{ }^{6}+071101 \mathrm{C}$	500	137	362	Qa				192，425	194，933	221，873	300，89	492，746	785，118	1，185，167	1，095，946	67，571	393，271	208，321	218，540
							L1R143C108	257，035	260，385	296，371	401,811	655，193	1，088，735	1，58，106	1，463，928	900，412	${ }^{525,318}$	278，269	291，919
SPO CO WATER DIST \＃3，SYS \＃2	12450	4748																	
63.20947 C	1400	1787	1,14	Qi	S－13	0	L1R155C118	1，356，540	1，374，220	1．564，143	2，120，616	3，473，714	5，534，856	$8,85,080$	7，726，100	4，783，727	2，772，446	1，468，066	1，540，646
$7331-\mathrm{A}$	3150	2530	2，881	Qi	S－15	3300	L1R154C120	3，052，215	3，091，995	3，519，321	4，771，386	7，815，857	12，45，，266	18，79，930	17，383，725	10，763，385	6，238，04	3，304，363	3，466，454
63－25972C	2700	4320	1，955	Qi	S－16	3400	L1R155C119	2，616，184	2，650，281	3，016，561	4，089，759	6，699，306	10，674，365	16，113，369	14，900，366	9，225，758	5，346，860	2，832，311	2，971，247
63－26018C	1200	1920	869	Qi	S－18			1，162，748	1，177，003	1，340，694	1．817，671	2，977，469	4，744，162	7，161，497	6，622，372	4，100，337	2，376，382	1，258，805	1，320，54
310－A	100	104	72	Qi	S－18			96，996	98，159	111，724	151,473	248，122	399，347	596，791	${ }^{551,864}$	341，695	198，032	104，900	110，046
757－D	100	64	72	Qa	S－18	$\stackrel{山 山 N}{\leftrightarrows}$		89，922	91，064	103，649	140，524	230，188	366,771	553，654	511，975	316，997	188，718	97，318	102，092
2084－A	285	269	206	Qi	S－18			277，153	279，752	318，415	431,697	707，149	1，126，739	1，70，856	1．572．813	973，830	566，391	298，966	313，632
2315－A	740	688	536	Qi	S－18	岸		717，028	722，373	826，761	1，120，897	1，836，106	2，925，567	4，416，257	4，083，996	2，528，541	1，465，436	776，263	814,342
63．＊06017（（624－A）	2400	688	1，738	Qa	S－18	2		966，338	978，933	1，114，225	1，510，632	2，474，519	3，942，784	5，951，785	5．503，728	3，407，713	1，974，967	1，046，169	1，097，488
3211－A	375	600	272	Qi	S－18			366，359	368，095	418，967	568，22	930，459	1，482，551	2，23，968	2，069，491	1，281，355	742，620	393，377	412，673
							L1R153C113	3，672，414	3，720，277	4，234，435	5，740，915	9，404，013	14，983，919	22，618，809	20，916，039	12，950，468	7，505，545	3，975，798	4，170，826
TRENTWOOD IRRIGATION DISTRICT 3	2000	3200	1，150	Qi															
63.26592 C	2000	3200	1，527		S02	750	${ }^{\text {L1R136C121 }}$	62,17	40，989	6， 3,57	862，00	232，002	312，415	774，170	681,038	294，590	86,880	45，822	58,221
63．06748C			0		S03	3000	L1R135C125	248，469	163，954	255，429	3，448，001	928，007	1，249，662	3，996，680	2，724，153	1，178，361	347，519	183，289	232，822
			0		504	2000	L1R136C120	165,646	109，303	170，286	2，298，667	618,671	833，108	2，064，454	1，816，102	785，574	231，679	122，193	155，255
63＊＊09702C			0		S05	2300	L1R136C126	190，493	125，698	195，829	2，643，467	711，472	958，074	2，374，122	2，088，517	903，410	266，431	140，522	178，543
$63^{*+06044}$			0		506	2000	L1R136C125	165，646	109，303	170，286	2，298，667	618,671	833，108	2，064，454	1，816，102	788，574	231，679	${ }_{122,193}$	155，255
VERA WATE \＆PowEr	46400	10081		Qa															
63.27844 C	13400	1477	9，133		Well 1	4000	L11145C122	1，789，936	1，870，108	2，024，566	2，660，969	5，314，843	7，100，459	10，851，944	12，144，911	6，715，992	3，127，156	1，998，125	1．803，820
$63^{2+06965 S}$	3400	2031	2，317		Well 2	5500	L1R145C125	2，461，162	2，571，399	2，783，806	3，658，833	7，307，908	9，763，131	14，92，804	16，699，252	9，234，490	4，299，839	2，747，422	2，480，252
$63^{*+06975}$	1400	2068	954		Well 3	5600	L1R151C122	2，505，911	2，618，152	2，834，421	3，725，357	7，40，780	9，940，643	15，192，091	17，002，875	9，402，389	4，378，018	2，979，376	2．525，348
$63^{* * 09128 C}$	4000	369	2，726		Well 33	1000	L1R151C122	447，484	467，527	500，147	665，24	1，328，711	1，775，115	2，712，873	3，036，228	1，678，998	781，789	499，531	450，955
$63^{* 507938 C}$	3100	443.1208791	2，113		Well 4	1200	L1R153C124	536，981	561，033	607，376	798，291	1，594，453	2，130，138	3，25，448	3，643，473	2，014，798	${ }^{938,147}$	599，438	541,146
$63^{* 506935}$	7100	812	4，839		Well 5	2200	L1R151C123	984，465	1，028，560	1，113，522	1，46，533	2，923，163	3，905，253	5，968，322	6，679，701	3，693，796	1，719，936	1．098，969	992，101
$63^{* 200695 S}$	6300	1477	4，294		Well 6		L1R149C122	894，968	933，054	1，012，293	1，330，485	2，657，421	3，550，230	5，42，747	6，072，455	3，357，996	1，563，578	999，063	901，910
63．00711	6300		4，294		Well 7		L1R148C123	899，968	${ }^{935,054}$	1，012，293	1，330，485	2，657，421	3，550，230	5，42，747	6．072，455	3，357，996	1，563，578	999，063	901，910

System Name	Water Right		$\begin{gathered} \text { Annulized Qi } \\ \text { (AF/YR) } \end{gathered}$	Allocation Method	Source	Capacity	Model Cell	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	oct	Nov	Dec																	
Water Right	gpm	AF/VR																																		
$63^{+006945}$	6000	1403	4,089		Well 8	3800	L1R149C126	1,700,439	1,776,003	1,923,357	2,527,921	5,099,100	6,745,436	10,38,919	11,537,665	6,380,193	2.970,798	1,988,219	1,713,629																	
63*00975	1100	1218.582418	750		Well 9	3300	L1R149C126	1.476.697	1,542,839	1,670,284	2,195,300	4,384,745	5,857,879	8,952,882	10,019,551	5.540,694	2,579,003	1,688,453	1.488,151																	
Within Spokane Valley-Rathdrum Prairie Aquifer, WRIA 55 and 57																																				
SPOKANE, CITY OF	241550	148185																																		
$63^{*}+003735$	54550	36000	41,796	Qa	Well Electric (S02)	39300	L1R141C101	74,87,674	67,726,900	71,94,002	81,992,843	148,658,274	196,534,760	274,002,315	245,285,912	167,352,208	98,02, 329	70,252,149	71,543,466																	
63.003745	14000	1870	11,486	Qa	Ray St (S04)	21550	L1R150C95	3,886,882	3,517,994	3,736,987	4,259,073	7,721,971	10,20,889	14,23,8888	12,74,240	8,93,017	5.092,754	3,649,209	3,716,285																	
	7000	350	5,743	Qa	Ray St (S04)			727,491	655,448	699,436	797,153	1,445,289	1,910,755	2,663,911	2,384,724	1,627,035	953,189	683,007	699,561																	
504-D	1250	2000	1,026	Qi	Ray St (S04)			2,037,233	1.843,887	1,958,668	2,232,309	4,047,319	5,350,788	7,459,893	6,678,070	4,556,274	2,669,267	1,912,661	1,947,817																	
\#507-D	2600	520	2,133	Qa	Ray St (S04)			1,080,844	978,266	1,039,162	1,184,341	2,14,286	2,838,835	3,957,811	3,543,019	2,417,310	1,416,167	1,014,753	1.033,405																	
$63^{*+00376}$	11600	1280	9,517	Qa	Hoffman Ave (S05)	10920	L1R137C92	2,660,540	2,408,039	2,557,938	2,915,301	5,285,628	6,887,003	9,742,305	8,721,277	5,950,301	3,485,499	2,497,854	2,543,767																	
63*00352C	${ }^{63000}$	51240	51,887	Qa	Parkwater (S03)	63000	L1R142C101	106,504,722	96,396,802	102,397,450	1116,703,146	211,590,276	279,734,475	389,996,629	349,123,614	238,197,975	139,546,915	99,992,225	101,830,171																	
728-A	11000	4080	9,025	Qa	Grace (S06)	19000	L1R141C89	8,480,470	7,675,624	8,153,427	9,292,522	16,87,938	22,73,939	31,05,596	27,99,070	18,966,584	11,111,464	7,961,910	8,108,257																	
592	2000	1000	16,409	Qa	Grace (S06)			2.078,546	1,881,280	1,998,389	2,277,59	4,129,396	5,459,299	7,611,175	6,813,498	4,648,672	2,723,398	1,951,499	1,987,318																	
3199.A	2500	20000	20,511	Qa	Nevada St (S01)	25000		41,57,930	37,625,006	39,96,779	45,551,59	82,58,930	109,185,978	152,223,508	136,269,951	92,973,449	54,46,9,90	39,028,971	39,76, 359																	
63**V226658	9000	4760	7,384	Qa	Central Ave (S08)	16800	L1R134C85	9,893,881	8,954,894	9,512,331	10,841,276	19,65,927	25,98,263	36,29, ,195	32,43,248	22,127,681	12,963,375	9,288,895	9,459,633																	
63*05309C	7000	11480	5,743	Qi	Central Ave (S08)			11,40,502	10,325,769	10,96,542	12,50,930	22,64,987	29,964,413	41,75,401	37,39, ,93	25,515,133	14,947,894	10,710,901	10,907,777																	
63*05855C	7900	12640	6,481	Qi	Central Ave (S08)			12,85,310	11,653,368	12,378,783	14,108,193	25,579,057	33,819,980	47,46,524	42,20,403	28,79,650	16,869,766	12,088,017	12,310,205																	
63**0371CBHSWRIS	7000	350	5,743	Qa	Central Ave (S08)			727,491	658,488	699,436	797,153	1,445,289	1,910,755	2,663,911	2,384,724	1,627,035	953,189	683,007	69,561																	
					Baxter Well	0	L1R138C74	0	0	0	0	,	0	-	0	0	0	0	0																	
Within Spokane Valley-Rathdrum Prairie Aquifer, WRIA 55																																				
G3-0056AALCWRIS	2300	1085	1,593	Qa	Wells 1, 2, 3, 4	1-600	-1R130C93	1,690,503	1,337,129	1,603,206	2,423,429	3,870,198	6,202,814	9,921, 5 ¢	9,270,275	5,047,950	2,523,000	1,849,880	1,522,367																	
63.00674SWRIS	1000	2114	693	Qi	Wells $2 \& 4$	2-1400		1.016,824	800,273	966,316	1,457,673	2,327,894	3,730,944	5,967,914	5,575,997	3,303,302	1,517,56	1,112,688	915,691																	
$63.006755 W \mathrm{FIS}$	1000	2114	693	Qi	Wells $1 \& 3$	3-850		1.016,824	800,273	966,316	1,457,673	2,327,894	3,730,94	5.967,914	5,57,997	3,363,302	1,517,565	1,112,688	915,991																	
63.07576cWRIS	1200	483	831	Qa	Wells $1 \& 3$	4-1200		752,546	${ }^{595,238}$	713,685	1,078,817	1,722,862	2,761,253	4,416,823	4,126,767	2,247,152	1,123,142	823,495	677,699																	
SPO Co WATER DIST \#3, SYS \#3	3200	3000																																		
	1600	1500	1,158	Qi	S-20	800	L1R132C85	1,550,331	1,570.537	1,787,592	2,423,561	3,669,959	6,325,50	9,588,663	8.829,829	5.467,116	3,168,510	1,678,407	1,760,739																	
63*03849CWRIS	1600	1500	1,158	Qi	S-21	900	L1R128C85	1,550,331	1,570,537	1,787,592	2,423,561	3,969,959	6,325,50	0,588,663	8,829,829	5,467,116	3,168,510	1,678,407	1,760,739																	
SPO Co WATER DIST \#3, SYS \#4	3430	2242.8																																		
C3*052933 (1779-A)	500	470	362	Qi	S-24	0	L1R117C87	488479	400,793	556,622	${ }^{\text {757,363 }}$	1.240,612	1,976,734	2,983,957	2,799,321	1,708,474	990,159	524,502	550,231																	
	300	265	217	Q	S-25	300	L1R116C95	290,687	294,476	335,173	454,418	744,367	1,186,041	1,790,374	1,655,93	1,025,084	594,096	314,701	330,139																	
63.00949	1500	1772	1,086	Qi	S-26	1150	LR116C93	1,453,436	1,472,378	1,675,867	2,272,088	3,721,837	5,930,203	8,951,872	8,277,964	5,125,421	2,970,478	1,573,506	1,650,693																	
63.26510 C	300	460	217	Qi	S-27	0	L1R119C95	290,687	294,46	333,173	454,418	744,367	1,186,041	1,790,374	1,655,593	1,025,084	594,096	314,701	330,139																	
63.23578	30	16	22	Qa	S-30 (not listed on WR)	750	L1R117c89	22,473	22,766	25,912	35,131	57,547	${ }^{91,693}$	138,414	127,94	79,249	45,929	24,330	25,523																	
${ }^{\text {WHITWORTH WATER DISTRICT } 2}$	31472	21323																																		
G3-20621ALCWRIS	1966	3171	1,394	Qi	S01-1, , S01-8		L1R130C83	802,021	781,169	880,985	1,464,263	2,790,769	3,996,817	5.866,460	5,346,455	3,47,002	1.528,477	710,862	703,306																	
					S02-1A		L1R128C83	802,021	781,169	880,985	1,464,263	2,990,769	3,996,817	5.866,460	5,366,455	3,471,002	1,528,477	710,862	703,306																	
6^{3} *06911 CWRIS	1000	1161	709	Qi	S05-2A		L1R125C85	1,604,042	1,562,338	1,761,971	2,928,526	5,581,537	7,993,635	11,73,2920	10,692,911	6,942,005	3,056,954	1,421,725	1,406,611																	
G3.26135CWRIS	3000	2000	2,127	Qa	S09-3B		LRR118C84	2,465,268	2,401,173	2,707,990	4,500,880	8.578,319	12,285,496	18,02,440	16,43,0,39	10,669,236	4,699,622	2,185,062	2,611,834																	
63.26134CWRIS	3000	4800	2,127	Qi	S06-2B		L1R125C84	2,447,674	2,384,036	2,688,663	4,468,757	8.517,096	12,197,815	17,03,743	16,316,751	10,593,090	4,664,731	2,169,468	2.146,406																	
${ }^{63.09831 C}$	500	159	355	Qa	S07-3		L1R121C83	195,989	190,893	215,285	357,820	681,976	976,697	1,433,579	1,306,506	848,204	377,512	173,712	171,866																	
63.4928 C	500	67.5	355	Qa	SA010-4		L1R119C79	83,23	81,040	91,395	151,005	289,518	414,635	608,595	554,649	360,087	158,566	${ }^{73,746}$	72,962																	

Figure 1: Full Inchoate Water Right Exercised - August 2000

Figure 2: Full Inchoate Water Right Exercised - August 2001

Figure 3: Full Inchoate Water Right Exercised - August 2002

Figure 4: Full Inchoate Right Exercised - August 2003

Figure 5: Full Inchoate Water Right Exercised - August 2004

Figure 6: Aquifer/River Interaction - August 2005

